Lynn Andrew, “The Fallacy in Intelligent Design”

The Fallacy in Intelligent Design

by Lynn Andrew

We experience what God has designed, but we do not know how he
did it. The fallacy is that the meaning of “intelligent design” depends on
our own experience.

If creation is the result of intelligence, then “design” is implicit and
loses its separate significance. “Intelligent design” is a semantic trick that
links human experience in the temporal domain to the work of God in
eternity.

One of its faults is that it leaves room for the mindless fantasy of non-
intelligent design. It has the ill effect that when you point to evidence of
“intelligent design” you concede the possibility of there being something
else. Putting it in the negative is no improvement: by saying “complexity
could not have evolved,” you leave the same door open and worse; you
pit evolution against non-evolution, lending credibility to the former and
putting forth nothing to oppose it.

When I point to the eye as an example of the work of God, I should
say, “some genius made it work,” not, “this is the work of an intelligent
designer.” The difference is the word “design,” which brings in the an-
thropomorphism of a drawn-up plan.

“Intelligent design” envisions the universe and everyone in it having
been planned by some process that resembles the work of a human de-
signer, only amplified astronomically. But what we know about the work
of designing is really discovering and inventing things: finding what can
be done and how it satisfies some need. Did God discover anything? We
would rather say that he did his intelligent designing as quick as lighten-
ing without a single intermediate thought. Did he have some criterion by
which his design was judged? It seems rather that Omniscience and Om-
nipotence would have hit the mark immediately without question. So if
his methods are inscrutable, is it reasonable to link our perceptions of his

1

Lynn Andrew, “The Fallacy in Intelligent Design”

creations to our experience of what producing our “creations” entails?

The Bible speaks of God as Creator but never as Designer. Creation
involves design, of course, but all we know about design is from the
manner in which we humans design things for our own relatively in-
significant “creations,” all of which are works within Creation. When we
speak of “evidence for intelligent design” we refer to what resides within
the framework of Creation. Since time and space are included in Cre-
ation, our sequential thinking about design may have no analog in his
work at all.

On the other hand we cannot be sure that it does not. We are made in
the image of God. It could be his intention that we understand how he de-
signs things, which is a very exciting possibility. If it is true that the way
God designs things is echoed in the way we design things, then which of
our many approaches to designing are we going to attempt to ascribe to
him? Is he most like an architect designing a building, a city, or a chemi-
cal plant? Maybe he goes about it as would an executive designing an or-
ganization. How about a legislator crafting laws and regulations? Or does
his work resemble that of a composer of music?

Designs are fascinating. They are purely information. You can make
copies of a drawing or a chart or a musical score and you have not multi-
plied the design: there is still only the one. Information must be embod-
ied in some medium, but the medium is not the information. Information
has no physical mass and therefore it is not tied to time as we know time:
it does not decay or change with time. The physical medium will deterio-
rate, but copies of the information can be preserved indefinitely for use
by a suitable interpreter.

The concept of a timeless design has the ring of the divine, but the
types of designs mentioned above leave a large gap between the informa-
tion in the design and the object of the design. For example, to go from a
set of architect’s drawings to a completed building requires a great
amount of intelligence, skill, and additional information that must be
supplied by the builders. Therein lies a fallacy if we try to use one of
these types of design to model what we are assuming is the design activi-

2

Lynn Andrew, “The Fallacy in Intelligent Design”

ty of the Creator: it does not seem fitting that God would need help to go
from his design to his creation, even if he designed us to understand it.

A unique kind of design takes place in the development of computer
software. There is no gap here: software, which is the end product, is it-
self information, and the distinction between design and construction is
blurred. Yes, a suitable computer is required to interpret the software, but
the “computer” which a software program is written for is typically an-
other software program. So software is not necessarily dependent on par-
ticular hardware or even a particular type of hardware. In other words,
software not only represents a design, it is the end product of the design.

Someone will tell you that software is basically a set of instructions
that make a computer do something. This is only partly true. Computer
programmers do not think of it that way. The programmer’s view of the
software is not in the same domain as the one seen by the computer: he
does not write sequences of instructions, but rather methods and proce-
dures for generating instructions.

A procedure might consist of a “loop,” for example. The programmer
sees the loop as a static entity. The computer experiences the results of
perhaps a few million executions of the loop in a very short period of
time, each execution issuing different instructions. A very simple pro-
gram can blast out a complex galaxy of the elements of whatever it is
that it is doing without even needing to know what it is doing—because
it is a general procedure that can be used in many different applications.

A smart programmer will make methods and procedures that are rather
general in order that they may be used over and over in various applica-
tions simply by changing parameter data, or better yet by swapping cer-
tain procedures at lower levels that get used by the procedure being writ-
ten. As in the example of the “loop” procedure, a procedure may accept
other procedures and not know or care what the others are doing. Proce-
dures can automatically “write” other procedures: often a procedure will
generate or modify procedures so that it can address a whole range of ap-
plications. A procedure may change its function entirely, either by hav-
ing its mode of operation depend on external conditions or by being re-

3

Lynn Andrew, “The Fallacy in Intelligent Design”

placed by another procedure. Some procedures are designed to execute
themselves—and yet there is only one of them. And the order in which
such things happens usually depends on other things which are unknown
and unknowable to the programmer—who does not need to know, does
not want to know, and frankly does not care.

Although software is pure information and in its source form is a stat-
ic, finished creation of the programmer, it becomes very dynamic in use
as it unfolds in time—or rather is explored by time. It seems to constant-
ly change itself, adapting to new conditions, but seldom does things per-
fectly. Internal checks to correct errors, cleanup operations to get rid of
accumulated “garbage” data, and embedded defense mechanisms against
unfriendly interference are all involved. The programmer cannot tell you
much about the time sequence in which these things occur even though
he may be the sole creator of the software because his domain is separate.

Then there are what we may refer to as processes, which are like soft-
ware programs within software programs that run (effectively) concur-
rently. Hundreds of these may be active at the same time in one computer
—all part of what goes on in real time without the programmer’s knowl-
edge yet all of it the result of his creation.

It sounds overwhelmingly complex, but from the programmer’s point
of view it is not as complex as it sounds because he sees methods and
procedures, not the embodiment of them in real time except on rare occa-
sions.

At the programmer’s disposal may be a host of procedures developed
on other projects. In fact programmers strive to make their procedures re-
usable. So the programmer’s work is largely a matter of stitching togeth-
er procedures and functions that he developed earlier or that someone
else provided. Most likely there will be vestiges of other applications.

Suppose you asked me to write an app to simulate an aquarium. I
would consider doing it if you gave me the freedom to make fanciful
aquatic creatures. First [would find or write a procedure that moves an
image across the screen. Then to avoid the tiresome task of drawing im-
ages of fish, I would write a general procedure capable of generating any

4

Lynn Andrew, “The Fallacy in Intelligent Design”

three-dimensional body, and into it I would plug constraints to force it to
make bodies having symmetry, a head, a tail, and fins. This procedure
would call on other procedures to determine the sizes and distribution of
features. To make life easier for myself and to make the final product en-
grossing even to myself, I would not expend any effort in designing spe-
cific arrangements of features; rather I would hook in a random number
generator and pass the results through a filter set to eliminate arrange-
ments that are structurally impractical. A similar set of procedures would
provide the colors and markings on the envelopes of the bodies. If 1
found enough commonality between the shape generator and the col-
oration procedure, I might share some functions or even make a more
general procedure that would emit both procedures. And so on. As soon
as the system is far enough along to produce the simplest thing on the
screen, I would try it out and then keep trying it out with each new ad-
vancement, using the visual evaluation to guide the next step.

If you had insisted that the program replicate a real aquarium or some-
thing that has already been done, I would decline, knowing that it would
take too long and be no fun at all. I would suggest that you go take some
photos and make yourself a slide show. But if you like my unique little
aquarium and would like me to do another project that puts a parade of
dogs on the screen, I would jump at the chance, for nothing is more fun
than this type of programming, and most of what I need for the dogs I
have already developed for the fish.

One is tempted to run with this (as some do) and theorize that the
physical laws underlying Creation and the mathematics underlying the
physical laws are characteristics of celestial computer software, and the
quantum level is evidence of its digital “hardware,” and every physical
thing is a simulation just as a video game simulates “reality” that has no
physical existence. That would mean our Creator is a Programmer, we
are the outputs of his software, and everything is information, which is it-
self outside of the “physical” universe. But this is off my subject.

The worst thing about employing the term “intelligent design” when
attempting to refute evolution is that all human designers use evolution.

Lynn Andrew, “The Fallacy in Intelligent Design”

Evolution is a wonderfully powerful tool in the hands of a designer. We
speak of “software development” rather than “software design” because
evolution is an essential part of the process, which is very much like the
work of an inventor: lots of incremental trial-and error (where trials are
intelligently chosen and the results are intelligently judged). So another
danger in ascribing “intelligent design” to the Creator is that when the
connection is made to the human intelligent designer, evolution comes
along with it. Of course this evolution is different from what the atheist
dreams of; it is a method of intelligence and has no intelligence in itself.
But it definitely fits the definition of an evolutionary process, and it is the
only kind that works.

But I would not think that God would need to use even this type of
evolution. So I think we should stop referring to his work as “intelligent
design” and admit that we know nothing at all.

Intelligent designers keep experimenting and pushing the evolution of
software design toward something worthy of the Al label. If they succeed
to the point where a machine has enough intelligence to produce works
of intelligence as useful as those from a human designer, the term “intel-
ligent design” will have lost whatever edge it had in the hands of cre-
ationists. No doubt dozens of science-fiction writers have already
sketched make-believe worlds where machines have the intelligence to
produce machines as intelligent as themselves. If I were to write such a
story, I would emphasize the obvious: that this cutting edge of evolution
has made no progress at all since the self-generating machine is an ex-
ceedingly clumsy imitation of the elegant reproductive ability that came
with every living organism in Creation. A good novelist would put an
ironic twist on it—for example having natural worms ruin the factory
these robots have built to reproduce their kind.

Not being much interested in literature that makes no reference to the
Bible or neglects the Gospel, I would write a happier ending. To my way
of thinking the logical response to the uninspired triumph of atheism
aiming to duplicate the miracle of creation would be laughter in heaven.

.l.

6

